
3. Method of Logical Effort

In this chapter, we introduce the method of logical effort to design fast digital circuits. This method is based on the Model of Logical Effort for the delay of digital
circuits. The method of logical effort is sufficiently accurate and simple enough to facilitate paper-and-pencil design of fast circuits. Experiment 3.1 offers a first
glance at the problem of designing a fast inverter chain.

▶  Experiment 3.1: Delay of 4-Inverter Path

The digital circuit below is a chain of four inverters and a load capacitance, which represents the input capacitance of one or more logic gates. The delay of the circuit
is the time it takes the inverter chain to charge or discharge the load capacitance after the input changes. This delay is proportional to the transistor gate capacitances
and, therefore, the size of the inverters and the load. You can vary the scale factors of the inverters and the size of the load with the sliders below the schematic. The
stage-1 inverter is a reference inverter. Try varying the scale factors of the stage-2, stage-3, and stage-4 inverters to minimize the delay for a given load.
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Inverter 2:  1    Inverter 3:  1    Inverter 4:  1

Load:  300    Delay: 107

For a capacitive load of 1200 units, you should be able to reduce the delay from 407 time units when using reference inverters with scale factor 1 by a significant
factor (close to 20) when choosing the inverter sizes properly. In fact, gate scaling enables us to reduce the delay to its square root.

If Experiment 3.1 makes you wonder whether there is a guiding principle to design a fast circuit, this chapter should satisfy your curiosity.
We study the delay of digital circuits, beginning with a single gate. Then, we consider circuit topologies with gradually increasing complexity,
and introduce techniques for analyzing their delay. As a whole, these techniques constitute the method of logical effort, perhaps best
perceived as a way of thinking about the design of fast digital circuits. The hallmark of the method is not merely its use for timing analysis but
the insight it provides on how to minimize the delay of a circuit. Ivan Sutherland and Bob Sproull, two contemporary computer scientists,
pioneered the method of logical effort [SSH99]. In this chapter, we introduce the method of logical effort in a refined form.

3.1. Delay of Logic Gates

The Model of Logical Effort defines the dimensionless delay of a logic gate as

where  is the logical effort,  is the electrical effort, and  is the parasitic delay.

Logical effort and parasitic delay are gate specific, and are constant for a particular gate. For example, a reference inverter has logical effort
 and parasitic delay  These values do not change if we scale the reference inverter in size by increasing its transistor

widths. An inverter that is twice as large as the reference inverter still has logical effort  and parasitic delay 

In contrast, the electrical effort of a logic gate depends on its size. If a gate with input capacitance  drives capacitive load  then the
electrical effort of the gate is

Because input capacitance  is proportional to the size of the logic gate, the larger the gate, the smaller electrical effort  Consider the reference inverter with
normalized input capacitance  If we scale the reference inverter with scale factor  then the scaled inverter has input capacitance 
The electrical effort of the inverter is
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(1)

which is by factor  smaller than the electrical effort of the reference inverter with the same load. In a digital circuit consisting of an inverter driving capacitive load 
the delay of the inverter is

Experiment 3.2 enables you to choose load  and vary the size of the inverter by means of scale factor  in range  Observe that for a given load,
increasing the size of the inverter reduces the delay according to Equation (1).

▶  Experiment 3.2: Delay of Inverter with Load

Inverter:  6    Load:  15    Delay: 1.83

The delay of the inverter in Experiment 3.2 is a linear function of the electrical effort. When designing circuits, we may vary the electrical effort of a logic gate by gate
sizing or by changing its load. Figure 1.45 shows the delay of an inverter as a function of electrical effort  Also shown in Figure 1.45 is the delay of a NAND gate.
Since the NAND gate has a logical effort of  its delay grows faster with increasing  than for the inverter. The delay of a NOR gate with 
increases even faster with increasing  than the delay of the NAND gate.

Compare the delay of the reference inverter with load  capacitive units to that of a scaled inverter with 
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a. Compute the delay of the reference inverter ( ).
b. Compute the delay of the scaled inverter for 
c. Use Experiment 3.2 to verify the delays in (a) and (b).

The delay of a reference inverter is  because  and  by definition. Electrical effort  because the reference inverter
has input capacitance  We conclude that the delay of the reference inverter driving load  is

time units.

If we scale the inverter with scale factor  the pMOS transistor has normalized width  and the nMOS transistor  units. Thus, the input capacitance
s scaled by  to become  As a consequence, the electrical effort to drive load  decreases to  and the delay of the scaled
nverter is

time units. Increasing the size of the inverter by a factor of four decreases its delay by a factor of  or almost by a factor of three.

We can verify both delays in Experiment 3.2 by adjusting the load to 18 capacitive units, and then observing the delays by adjusting the inverter scale factor to  and 

Hide

Draw the delay points at the boundaries of the slider ranges of inverter scale factor and load in Experiment 3.2 in a -diagram as shown in Figure 1.45.

Use Experiment 3.2 to determine the delays for scale factors  and  and loads  and  The corresponding pairs of electrical efforts
 and delays are:

1 1 1 0.33 1.33
2 1 30 10 11

3 10 1 0.03 1.03
4 10 30 1 2
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The -diagram below shows the four delay points on the inverter line.
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Compare the delay of the matched NAND gate with load  capacitive units to that of a scaled NAND gate with 
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a. Compute the delay of the matched NAND gate ( ).
b. Compute the delay of the scaled NAND gate for 
c. Draw the delay points of (a) and (b) in a -diagram as shown in Figure 1.45.

The delay of a matched 2-input NAND gate is  where  and  The electrical effort of the NAND gate with load  is
 We deduce the input capacitance of the matched NAND gate given that we recall logical effort  Rearranging the definition of
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 we find  capacitive units. Now, for given load  we obtain  and the delay of the matched 2-input NAND gate is

time units.

Scaling the NAND gate with scale factor  yields a normalized input capacitance of  capacitive units. Correspondingly, the electrical effort decreases by
a factor of 6 to  Since scaling affects neither the logical effort nor the parasitic delay of a gate, the delay of the scaled NAND gate driving load

 is

time units, which is almost three times faster than the matched NAND gate.

The -diagram below shows delay point 1,  and delay point 2,  Both points lie on the delay line of the 2-input NAND gate.
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3.2. Delay of Two-Stage Paths

In this section we study the delay of a two-stage path with two gates in series. Experiment 3.3 examines an inverter pair.

▶  Experiment 3.3: Delay of Inverter Pair

Consider the path below with back-to-back inverters driving a load capacitance. You can vary the size of the inverters and the load with the sliders below the
schematics, and inspect the associated circuit delay.

1. Vary the size of the stage-2 inverter. Notice that the delay increases towards both small and large sizes. The minimum delay of 8.33 units occurs at scale factor
 for inverter 2, assuming inverter 1 is sized like a reference inverter,  and the load is  capacitive units.

2. Double the size of inverter 1,  and vary the size of inverter 2. The qualitative behavior is the same as in experiment 1: The minimum delay of 6.5 units
occurs at scale factors  and  for inverter 2.

3. Increase the load to  capacitive units, and vary the size of inverter 2. The qualitative behavior is the same as in experiment 1. The minimum delay is 8.33
units, if inverter 1 is scaled by 

4. Increase the size of inverter 1 to scale factor  Now, the delay decreases monotonically with increasing size of inverter 2. The minimum delay with a load of
size 60 is 5 time units.

We observe that the delay is sensitive to the size of inverter 2. There exists a minimum delay, if the size of inverter 2 is chosen carefully, neither too small nor too large.

Hide



Inverter 1:  1    Inverter 2:  3

Load:  30    Delay: 8.33

In the following we study the delay of the generic path in Figure 3.1 with two gates in series, gate 1 and gate 2, and gate 2 drives capacitive load  Gate 1 has
logical effort  parasitic delay  and is scaled such that its input capacitance is  Analogously, gate 2 has logical effort  parasitic delay  and input
capacitance 

CC LL

CC11 CC22 gate 2gate 2gate 1gate 1

Figure 3.1: Generic two-stage path with two gates in series and capacitive load 

The delay of the path is the sum of the delays of each gate. The input capacitance of gate 2 is the load capacitance of gate 1. Thus, gate 1 has electrical effort
 and delay
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Gate 2 has electrical effort  and delay

The path delay is the sum of the gate delays:

Writing path delay  in terms of stage efforts  and  yields

which has the same form as the delay of a single gate, i.e. the path delay is the sum of the path effort F and path parasitic delay P.

We wish to minimize path delay  assuming that we can resize gate 2. If the scale factor for gate 2 is our only design parameter, then input capacitance  is the only
free variable in  In particular, since parasitic delay  remains constant under sizing, minimizing  requires minimizing path effort 

Notice that the product of the stage efforts

is independent of  Therefore, the geometric mean of the stage efforts  remains constant under changes of  Since the logical efforts and capacitances
of a circuit are positive numbers, we can apply the Theorem of Arithmetic and Geometric Means to minimize the path effort as follows. The geometric mean of the
stage efforts cannot be greater than their arithmetic mean

and equality holds if and only if the stage efforts are equal,  Furthermore, according to the corollary of the minimium arithmetic mean, the arithmetic mean
assumes its minimum for equal stage efforts, if the geometric mean is constant. Therefore, we conclude that the path effort is minimal if the stage efforts are
equal:
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This is the crucial insight that enables us to minimize the path delay by sizing gate 2. Gate 2 must have an input capacitance  that yields equal stage efforts:

With this choice of  let  be the stage effort that minimizes the path effort, i.e.

Then, we can write the minimal path effort as:

We introduce the path logical effort G  and the path electrical effort H  such that  Then, we can write the minimum path

delay  of the two-stage path as:

Path logical effort  and path electrical effort  are easily identified in a given circuit. Path logical effort  is the product of the logical efforts of the gates on
the path. Path electrical effort  is the fanout of the path, i.e. the ratio of the load capacitance and the input capacitance of the path. The path electrical
effort is also the product of the stage electrical efforts

Capacitance  serves as both input and load capacitance and cancels out. Thus, to minimize the path delay of a two-stage path, all we need to do is identify  and

 because 



In summary, given a two-stage circuit with load capacitance  and gate 1 with input capacitance  we may size gate 2 to minimize the path delay. Stage effort

 determines input capacitance  of gate 2.

If we wish to know the scale factor for gate 2, we recall two facts from the Model of Logical Effort: (1) the logical effort of a gate is the ratio of the input capacitance of
the matched gate and the reference inverter with input capacitance :

and (2) the input capacitance of a sized gate is scale factor  times the input capacitance of the matched gate:

These basic facts determine scale factor :

In case of gate 2 of the two-stage path, given  we obtain scale factor :

The following examples illustrate the design of two-stage paths.

■  Example 3.1: Minimize Delay of Inverter Pair

We analyze the path delay of the inverter pair in Experiment 3.3. In terms of the generic two-stage path in Figure 3.1 both gates are inverters with identical logical
efforts,  and identical parasitic delays,  The input capacitance of a sized inverter is  The scale factors of
the inverters,  and  are determined by the position of the sliders in Experiment 3.3. Therefore, the input capacitances are  and 
Furthermore, load capacitance  can be adjusted with the slider in Experiment 3.3.

Given input capacitance  and load capacitance  we wish to minimize the delay of the path. Path delay  is minimal if the stage efforts are equal to 
Path logical effort  is the product of the logical efforts of the inverters:
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Path electrical effort  is the ratio of load capacitance  and path input capacitance :

We conclude that

Thus, we minimize the path delay by choosing  such that both stage efforts are equal to  We have several equations available to calculate  First, there is

Second, we may use the fact that stage effort  must be equal to :

and, third, stage effort  must be equal to  All three equations yield the same result for  With this choice of  and path parasitic delay  the
minimum path delay is

Hence, given  and  we minimize the path delay by adjusting scale factor  such that

This knowledge takes the guesswork out of Experiment 3.3. Instead, we can predict the delay and design the circuit for minimum delay. For example, given 
and  we choose  to obtain minimum path delay  As another example, consider  and  We would obtain minimum path delay



 with  Thus, the minimum path delay lies outside the slider range for inverter 2.

■  Example 3.2: Delay of Inverter Pair

Consider Experiment 3.3 with fixed load  Then, the path delay is:

If both inverters are reference inverters, i.e.  then the stage efforts of the inverters are

and the path delay is

We find that the stage efforts are unbalanced, with the second inverter bearing seven times the effort of the first inverter. If we increase the size of the second inverter
to bear stage effort  then scale factor  must be  Since  is the load capacitance of the first inverter, changing  affects stage effort 
Thus, resizing the second inverter to have  results in stage efforts

and path delay

The delay is the same, but the burden of the larger stage effort has shifted from stage 2 to stage 1. If we keep  constant, then we can express path delay  as
a function of scale factor :



The plot  in Figure 3.2 shows that the path delay assumes its minimum if the stage efforts are equal, i.e. for 

Figure 3.2: Path delay of inverter pair as a function of scale factor  of the inverter in stage 2. The inverter in stage 1 is a reference inverter and path electrical
effort 
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Minimize the delay of the 2-stage path using calculus.
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a. Derive the stage delay for each stage.
b. Express path delay  as a function of scale factor  and minimize  using calculus.
c. Compute minimum path delay  and the associated scale factor  for the NOR gate.
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The 2-stage path has a 2-input NAND gate in stage 1 and a 2-input NOR gate in stage 2. According to the Model of Logical Effort, the NAND gate incurs delay

and the NOR gate has delay

The normalized input capacitances depend on the scale factors. The NAND gate is scaled by factor 2, such that  because the normalized input capacitance
of the matched 2-input NAND gate is 4. Scale factor  of the NOR gate is variable. Since the matched 2-input NOR gate has a normalized input capacitance of 5 units, we have

 Given load capacitance  the stage delays are

and

The path delay is the sum of the stage delays:

and is a function of  Calculus tells us that function  has a minimum if the derivative is zero. The derivative of path delay  is

Setting the derivative to zero yields :

Since the scale factor for a CMOS gate must be positive, we find  The minimum path delay is
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time units. Strictly speaking, we should also inspect the second derivative to be sure that  yields a minimum rather than a maximum.

As circuit designers with a choice to size the NOR gate, we minimize the delay of the 2-stage path by scaling the NOR gate with factor  and obtain a minimum path delay of
 time units.

Hide

Use the method of logical effort to minimize the delay of the 2-stage path in Exercise 3.4.

a. Determine path logical effort  path electrical effort  and path parasitic delay 
b. Calculate best stage effort 
c. Calculate minimum path delay  and the associated scale factor  of the NOR gate.

We begin by identifying the characteristic metrics of the 2-stage path. Path logical effort  is the product of the gate logical efforts:

Path electrical effort  is the ratio of the load capacitance of the path and the path input capacitance:

Path parasitic delay  is the sum of the gate parasitic delays:

The best stage effort that minimizes the path delay is

When each stage of the 2-stage path bears stage effort  the minimum path delay is

To determine scale factor  of the NOR gate we exploit the fact that the normalized input capacitance of the scaled NOR gate is  where  is the input
capacitance of the matched NOR gate, and that best stage effort :



3.3. Multistage Paths

An -stage path provides more than just a straightforward generalization of the two-stage path to  stages. The number of stages of a path can serve as
additional design parameter for a circuit, because the delay of a path is not only a function of the gate sizes but is also a function of the number of stages. In this
section we study the path sizing problem of how to choose the number of stages together with the gate sizing problem in order to minimize its delay.

3.3.1. Gate Sizing

The gate sizing problem determines the scale factors for the gates on an -stage path in order to minimize its delay. Figure 3.3 shows a generic path with  gates
in series and load capacitance  In stage   logic gate  has input capacitance  logical effort  electrical effort  and parasitic delay 

......
CC LL

CC nnCC 11 CC 22
gate 1gate 1 gate 2gate 2 gate ngate n

Figure 3.3: Generic -stage path with  gates in series and capacitive load 

The path delay of the -stage path is the sum of the stage delays :

Alternatively, we could exploit the fact that stage 1 of the circuit, the NAND gate, must bear the best stage effort as well, i.e.  to minimize the path delay.
Hide
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The path logical effort of the -stage path is

the path electrical effort is

and the path parasitic delay is

Our goal is to minimize path delay  under the constraint of a constant path electrical effort  Observe that constant  implies that
path effort  is constant, because all logical efforts  and, hence,  are constant. We invoke the Theorem of Arithmetic and Geometric Means to minimize
path effort  Given a constant geometric mean  the arithmetic mean of the stage efforts is minimized, and is equal
to the geometric mean if all stage efforts are equal:

Therefore, the minimum path effort is

Since path parasitic delay  is constant for a given path, we conclude that the path delay of an -stage path assumes its minimum
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(2)

if and only if all stages bear the same effort  equal to the  root of path effort :

■  Example 3.3: Delay of 4-Inverter Path

We perform gate sizing to minimize the delay of the inverter chain in Experiment 3.1. The path consists of  inverters, and the stage-1 inverter is a reference
inverter, that is 

Given load  the path electrical effort of the inverter chain is  The path logical effort is  because the logical effort of an inverter is
 and  Furthermore, since the parasitic delay of an inverter is  the path parasitic delay is  Thus, the path delay of the 4-

stage path is:

To minimize the path delay, all stage efforts must be equal. Since all gates on the path are inverters with  the stage effort equals the electrical effort
 Thus, all stage electrical efforts must be equal, and must be equal to

This criterion enables us to determine the scale factors for each stage either by working from front to tail of the chain or vice versa. Let’s work backwards starting with
stage 4:

The scale factor for the stage 4 inverter derives from  as

Knowing  we can size stage 3:



and the corresponding scale factor is:

Analogously, we obtain for stage 2:

with scale factor

The stage-1 inverter is a reference inverter with scale factor is 

Since  we can list the scale factors emphasizing their common form:

and see that the scale factor for stage  for  is

The scale factors form a geometric progression. This observation generalizes to arbitrary -stage inverter chains. We conclude that minimizing the path delay of
an inverter chain requires that all inverters must bear equal stage effort, which we accomplish by growing the inverter sizes geometrically.

With the inverter sizes determined above, the minimum path delay of the 4-stage path is according to Equation (2):



AA

BB

DD

YY

600600

For example, given  we obtain minimum delay  by scaling the inverters with factors   and

 The sliders in Experiment 3.1 do not support fractions. Thus, we may round the scale factors to   and  To calculate
the resulting path delay, we resort to the sum of the stage delays:

We note that rounding causes unequal stage efforts in range  However, the differences are small enough to slow down the circuit by  only.

■  Example 3.4: Delay of Logic Path

Consider a circuit for  The AND gate is implemented with a NAND
gate followed by an inverter, and the OR gate is implemented with a NOR gate
followed by an inverter. The NAND gate shall be sized like a matched NAND gate and
the load driven by output  shall be  capacitive units. Perform gate sizing
to minimize the delay of the path.

We observe that the paths  and  are equal, whereas path  passes through the NOR gate and the NOR inverter only. Thus, we assume that the
path of interest is  because it incurs the largest delay. Path  has the same delay, and the delay of  is smaller.

Our plan is to determine the minimum path delay, and then derive the gate sizes from the associated stage effort. To simplify the notation, we enumerate the gates on
the path: the NAND gate is gate 1, the inverter gate 2, the NOR gate is gate 3, and the second inverter is gate 4. The path consists of  gates. Therefore, the
minimum path delay is

To determine path effort  we need to determine path logical effort  and path electrical effort  The path electrical effort is the ratio of load capacitance
 and input capacitance  The input capacitance of the matched NAND gate is  units, cf. Figure 1.48. Thus, we find

The path logical effort is the product of the gate logical efforts:
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Thus, the path effort is  Together with path parasitic delay

we obtain a minimum path delay of  units.

To achieve minimum path delay, all four stages must bear the same stage effort  This constraint enables us to determine the gate sizes. The NAND
gate in the first stage is a matched gate with scale factor  as required by the problem formulation. The stage effort of the NAND gate is

because the matched NAND gate has input capacitance  For minimum path delay, the stage effort must be  such that  Thus, the scale
factor for the stage-2 inverter must be

because the reference inverter has input capacitance  The stage effort of the inverter is

Since minimum path delay requires  the input capacitance of the NOR gate is  Because the matched NOR gate has input capacitance
 the scale factor of the NOR gate in stage 3 must be



The stage effort of the NOR gate is

Because the NOR gate must bear stage effort  we obtain the input capacitance of the stage-4 inverter,  The scale factor of the stage-4
inverter must be

Like all other gates, the stage-4 inverter must bear stage effort  Because  we can check our arithmetic:

which is equal to 600 within the accuracy of the arithmetic precision. Had we used additional fractional digits for the value of  e.g.  we would have
obtained a more accurate arithmetic result.

Note that the scale factors do not form a geometric progression as for inverter chains with minimum path delay, see Example 3.3, because the logic path includes
logical efforts. However, we may recognize the sequence as a geometric progression, weighted with logical efforts:

We would have arrived at the same scale factors by working backwards through the path, starting with the stage-4 inverter. We leave it as an exercise to double check
that these scale factors yield the minimum path delay by first computing the individual stage delays  and then taking their sum 

■  Example 3.5: Inverter Path Length



12001200

12001200

(a)(a)

(b)(b)

11

11

We wish to drive a load capacitance of 1200 units, either with (a) a single buffer or
(b) two back-to-back buffers. In both circuits the stage-1 inverter shall be a
reference inverter. The remaining inverters may be sized for minimum delay.

Intuitively, we may prefer the shorter 2-stage path of option (a), expecting that two
inverters have a smaller path delay than four. This is not always the case, however.

In Example 3.3 we minimize the delay of the 4-stage path in option (b). The smallest
possible delay of the 4-inverter chain is  delay units. The inverter pair of
option (a) constitutes a 2-stage path. According to Equation (2), the minimum path
delay with load  and input capacitance  i.e.

 is

delay units. We find that the minimum delay of the 2-stage path  is almost two times larger than the minimum delay of the 4-stage path  The next
section on path sizing offers the background that puts this result into perspective.

3.3.2. Path Sizing

Minimize the delay of the 3-stage path using the method of logical effort.
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a. Compute minimum path delay 
b. Compute the scale factors  and 

Solution
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The path sizing problem determines the best number of stages for a path in order to minimize its delay. As a concrete example, consider the inverter chain with 
inverters and load  shown in Figure 3.4.
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Figure 3.4: An -stage inverter chain.

Given the number of stages  and path electrical effort  we can minimize the path delay through gate sizing. According to Equation (2), the minimum
path delay of a chain with  inverters is

Figure 3.5 plots the minimum path delay as a function of the number of stages  for fixed path electrical effort  Note that the minimum path delay 
assumes the minimum  for a number of stages  Whereas gate sizing enables us to find a local minimum of the path delay for a given number
of stages  finding the global minimum of the path delay requires optimizing the number of stages 
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Figure 3.5: Minimum path delay of an -stage inverter chain as a function of the number stages  for fixed path electrical effort 

Given path electrical effort  we determine the best number of stages  by minimizing  We determine the minimum using calculus by deriving  w.r.t.  for
fixed :

Function  has a minimum where its derivative is zero. Call the best stage effort  the stage effort with path electrical effort  when using the best
number of stages  This is the stage effort where  is minimal, i.e. where derivative  equals zero:

We have arrived at an equation for best stage effort  that has no closed-form solution. However, we can compute  numerically, for example with Newton’s method
for finding zeros. In case of Equation (3), we want to find  such that function  is zero. With derivative  we obtain the Newton
iteration with iteration index :

Iterating with a suitable starting value, e.g.  produces result  Thus, Equation (3) holds for best stage effort

which enables us to derive the best number of stages



because  by definition and 

This result is very useful. First, since each inverter on the path must bear best stage effort  we know how to derive the scale factors for sizing each of the
inverters in geometric progression. Second, given a path with electrical effort  we find the best number of stages by taking the logarithm of  to base 3.59. Table
3.1 lists path efforts and the corresponding best number of stages. The numbers are rounded for ease of reading. For more accurate numerical results, use the path
sizing calculator below the table. Table 3.1 is suited to look up the best number of stages for a given path effort  which equals the path electrical effort  in an
inverter chain with  For example, using one stage is best for path efforts  up to 5.8. For efforts in range  a 2-stage design is best, and so
on. Path effort  of Example 3.5 lies between 300 and 1090, where  stages yield the fastest inverter chain.

path effort stages delay stage effort 
0 1.0

1 0-5.8
5.8 6.8

2 2.4-4.7
22.3 11.4

3 2.8-4.4

82.2 16.0
4 3.0-4.2

300 20.6

5 3.1-4.1
1090 25.3

6 3.2-4.0
3920 29.8

7 3.3-3.9

14200 34.4
8 3.3-3.9

51000 39.0
9 3.3-3.9



path effort stages delay stage effort 
184000 43.6

10 3.4-3.8

661000 48.2

Table 3.1: Best number of stages  for -stage inverter chain.

Path Sizing Calculator

Path effort F: 10.0
Best number of stages: 2
Stage effort: 3.16
Path delay (inverter chain): 8.32

Table 3.1 also includes the minimum path delay  for the given path efforts. For example, given  a 4-stage path yields  as

does a 5-stage path,  Furthermore, the right-most column lists the corresponding stage efforts  For example, consider 5-
stage inverter chains, which yield the smallest delay for path efforts in range  At the lower end, for  the stage effort with minimum delay is

 delay units, and at the upper end for  the stage effort is  delay units. The best stage effort  of a 5-stage
inverter chain produces the minimum delay for path effort 

■  Example 3.6: Inverter Chain Design

We design an inverter chain with input capacitance  and load capacitance  with minimum delay.

The path electrical effort of the chain is

Since the path logical effort of an inverter chain is  the path effort is  The best number of stages is



Stage effort

happens to be equal to best stage effort  The delay of the 4-stage path is

if the inverters are sized in geometric progression. The stage-1 inverter must be a reference inverter, because the path input capacitance  is given. Thus, the

scale factor of the inverter in stage  is  such that:

The path sizing calculator and Experiment 3.1 enable you to verify this result.

■  Example 3.7: Inverter Chain Path Sizing

Determine the number of stages for an inverter chain with path electrical effort  in order to minimize the delay.

According to Equation (5), the best number of stages is

which is a real number rather than an integer. Since the number of inverters must be an integer, we might decide to round 2.4864 to the nearest integer 2. However,
Table 3.1 tells us that we should use 3 stages. The reason is that the delay of a 3-stage path is less than the delay of a 2-stage path for :

Although such a small difference between the delays rarely matters in practice, the lesson to be learned is that rounding  may not yield the best solution. Instead, to
find the minimum delay you may want to check the delay for both numbers of stages the floor and the ceiling of 



■  Example 3.8: Path Sizing of Logic Circuit

Consider the circuit in Example 3.4 with a larger capacitive load of  units. We can increase the path length of a circuit by inserting buffers (inverter pairs)
between its output and the load. Perform path sizing and determine the minimum path delay of the circuit.

Path  of the circuit in Example 3.4 has a matched NAND gate with input capacitance  in stage 1. Therefore, the path must bear electrical effort
 Since an inverter has logical effort  the circuit has path electrical effort  no matter how many inverters we

insert on the path. Since the path electrical effort is also independent of the number of additional inverter stages, the extended path must bear path effort
 The path sizing calculator prescribes using 6 stages, or inserting two inverters at output 
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The minimum delay of path  is  which exceeds the minimum delay of a 6-stage inverter chain, given by the path
sizing calculator, by 2 parasitic delay units due to the NAND and NOR gates.

■  Example 3.9: Parasitic Delay of Inverter Chains

We investigate the contribution of parasitic delay to the total path delay of inverter chains.

Consider -stage inverter chains with path efforts that are powers of the best stage effort:

The corresponding minimum path delay is

The second summand represents path parasitic delay  because  Thus, the percentage of parasitic delay of an -stage inverter chain is

http://bibl.ica.jku.at/dc/build/html/_images/lexpath2.svg
http://bibl.ica.jku.at/dc/build/html/_images/lexpath2.svg


independent of the number of stages.

If the path effort differs from the powers of the best stage effort, yet we use the best number of stages according to Table 3.1, then the percentage of the path
parasitic delay is largest at the lower end of the path effort range and smallest at the upper end. Table 3.2 lists the percentages of path parasitic delay relative to the
total delay for the  for the path efforts at the boundaries of the ranges for which the number of stages is best. For example,  stages are best for

 At the lower end of the range, where  the path parasitic delay of 3 units contributes  to the minimum total delay of 11.4 delay
units. At the upper end, for  the parasitics amount to only  of the the minimum total delay of 16.0 units.

n\F 0 5.8 22.3 82.2 300 1090
1 100 14.7        

2   29.3 17.5      
3     26.2 18.7    

4       24.9 19.4  
5         24.2 19.8

Table 3.2: Percentage of path parasitic delay.

Minimize the delay of the inverter chain by path sizing.

CCLL=1800=1800
11

a. Compute  of the 3-stage inverter chain.
b. Determine the best number of stages 
c. Compute the minimum path delay  of the path-sized inverter chain.

The stage effort of the 3-stage inverter chain with a reference inverter in stage 1 and path electrical effort

s
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3.4. Branching Effort

So far, we have learned how to minimize the delay of a circuit path that drives a given load. We have assumed that the load is the equivalent load capacitance of one
or more gates. Even if the load consists of a single logic gate only, the last stage of the path fans out to drive the transistor gate terminals of the logic gate, such as
the nMOS and pMOS transistor gates in case of an inverter. In many circuits, fanout occurs not only at the end of a path, but anywhere along a path. When a gate in
stage  on a path drives more than one gate in stage  we say that the path branches. At the first glance, branching complicates the delay minimization of a
circuit, as Experiment 3.4 illustrates. However, the method of logical effort extends seamlessly to branching circuits.

▶  Experiment 3.4: Delay of Branching Path

Consider the 3-stage inverter chain below with branches after stage 1 and stage 2. The off-path inverters above and below the inverter chain are assumed to drive
additional loads that are not shown, because they do not affect the delay of the chain.

The stage-1 inverter is a reference inverter. Choose the size of the off-path inverters and the load, and try sizing the on-path inverters with the goal to minimize the
path delay of the 3-stage inverter chain.

We observe that this stage effort exceeds the best stage effort  by more than a factor of 2. This is a strong indication that more than three stages are needed to minimize
the path delay. In fact, the best number of stages is

Table 3.1 yields the same result. Using  stages, the minimum path delay is

time units. For comparison, the minimum path delay with  stages would be  time units.

Hide



Inverter 2:  1    Inverter 4:  1

Upper off-path inverter 3:  1    Lower off-path inverter 5:  1

Load:  80    Delay: 33.67

To understand the effect of branching on the delay of a circuit path, consider the annotated circuit in Figure 3.6. Our path of interest is  We examine the
branch at the output of stage-1 inverter 1 to off-path inverter 3.
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Figure 3.6: A branching circuit diverts drive current from the path of interest, 

Assuming off-path inverter 3 were absent, then inverter 1 would invest its entire output current  to drive inverter 2 on the path of interest. In contrast, in the presence
of off-path inverter 3, current  is diverted off the path of interest. Now, current  drives on-path inverter 2, which, by KCL, is:

Drive current  is smaller than output current  of inverter 1. Since input capacitances  of on-path inverter 2 and  of off-path inverter 3 are composed in
parallel, the equivalent capacitive load of inverter 1 is their sum  The capacitors form a current divider. If  drives load  then  must be

The larger off-path capacitance  is, the less drive current is available for the path of interest, and the larger is its delay.

In the method of logical effort, we account for the reduced drive current on the path of interest by introducing the branching effort b of a logic stage:

Note that  and  if  i.e. when there is no branching. In case of the stage-1 branch in Figure 3.6, we have  and 
so that the branching effort at the output of stage 1 of the path is:
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Branching effort  enables us to rewrite Equation (6) as  The current dividing branch directs only one  of output current  of inverter 1 to drive
inverter 2 on the path of interest. Less drive current on the path of interest increases the effort delay of the stage. Since a stage with branching drives both on-path
and off-path load capacitances, the stage effort with a branch is

rather than  because

accounts for the actual capacitive load of the stage including off-path load, and assuming that  captures the on-path electrical effort only.  is the input capacitance
of the logic gate that drives the branch.

For -stage paths, we define the path branching effort B as the product of the stage branching efforts:

where  is the branching effort of stage  Furthermore, we generalize our definition of path effort F to include off-path branching:

where  is the path logical effort and  the path electrical effort on the path of interest, as before. On a path without branching, we have  and  retains the
meaning of our original definition  The minimum path delay of an -stage path with branching retains its form  but
includes the branching effort in the generalized path effort term.

The concept of branching effort enables us to determine the minimum delay of a path with branching almost as easily as for a path without branching, provided the on-
path and off-path capacitances can be scaled in a correlated fashion. Consider 3-stage path  in Figure 3.6 again. Without the off-path inverters, the path
effort would be  where  since the path consists of inverters with  only, and the path electrical effort is  Including the off-path
inverters requires considering the path branching effort. Stage 1 has branching effort  and the inverter in stage 2 drives on-path load  and
off-path load  resulting in branching effort  The path branching effort is the product

With path parasitic delay  the minimum path delay is



Gate sizing for minimum delay becomes feasible if the on-path and off-path load capacitances of a stage are related. For example, if we are given design constraints
 and  then  reduces to

For a given path electrical effort  we can now apply the method of logical effort to calculate the stage effort  that each stage must bear, and deduce the
scale factors to minimize the path delay.

■  Example 3.10: Analysis of Branching Circuit

We analyze the delay of path  of the circuit in Figure 3.6 and Experiment 3.4. Stage-1 inverter 1 is a reference inverter with input capacitance  and
scale factor  Assuming the other inverters have variable sizes, the delay of path  is the sum of the stage delays:

You can vary the scale factors  and load capacitance  in Experiment 3.4 to verify this path delay expression.

We can determine the minimum delay of path  for a given load capacitance  only, if we also specify the off-path capacitances  and  Fixing these
capacitances by specifying constant scale factors for the off-path inverters rarely makes sense, and may even complicate the minimization problem. However, if the
design permits scaling both on-path and off-path capacitances of a branch in a correlated fashion, we can apply the method of logical effort directly. Consider the
constraints  and  that we introduced above already. Then, the stage effort that minimizes the path effort is  Given 

for instance, we find  and minimum path delay  delay units. We derive the scale factors  and  starting with  Stage 4 of the
path bears stage effort



which must be equal to  so that

Due to constraint  scale factor  Analogously, stage 2 bears stage effort

The stage effort must be equal to  Rearranging the equation for  we find:

According to constraint  we also have  You can verify the minimum path delay in Experiment 3.4 using rounded scale factors. Furthermore, the
summation of the stage delays yields  in agreement with 

■  Example 3.11: Branching Effort Simplies Delay Analysis

Consider the 2-stage path  below with off-path capacitance  We minimize the delay of the path without using the branching effort first, and then
demonstrate how much simpler the analysis becomes when using the branching effort.
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Stage 1 of the path consists of an inverter with load capacitance  Therefore, the stage effort of stage 1 is

because  Here, electrical effort  denotes the ratio of the total load capacitance to input capacitance rather than referring to the on-path load
capacitance only. The delay of stage 1 is
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because  Stage 2 of the path consists of an inverter with load capacitance  Therefore, stage 2 has stage effort

and stage delay

The path delay from input  to output  is the sum of the stage delays

To minimize  each stage must bear the same effort. According to the method of logical effort, this occurs under the condition  To determine
the minimum path effort

we need a constraint that relates on-path capacitance  and off-path capacitance  As a concrete example, assume that  Then, we obtain

Given load capacitance  and input capacitance  of the path, we can determine  by asserting the minimzation condition and rearranging it into a polynomial in
:



The positive root of this quadratic equation is

and the minimum path effort is

Therefore, the minimum path delay is

Recall that  is the path electrical effort  of the branching path.

Note that the derivation of  requires quite a bit of algebra which increases the chances of introducing errors in the calculation. For comparison, we redo the
minimization with the alternative method based on branching efforts. The method of logical effort states that the minimum path delay of a 2-stage path with branching is

In our example, under constraint  the path effort is

Therefore, the minimum path delay is



Note that we arrive at the result by following the method of logical effort like a cookbook recipe, without actually minimizing the delay and laboring through the
associated algebra to determine  Using the branching effort simplifies the delay minimization significantly. This is where the method of logical effort begins to shine.

■  Example 3.12: Branching Pitfall

When analyzing a branching path with the method of logic effort we account for the branch at the output of a logic stage, because a branch increases the electrical
effort and, thus, the delay of the stage. In this example we analyze the branching circuit below, which is the circuit of Example 3.11 with the stage-1 inverter removed.
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Path  contains one inverter. Thus, the path has a single stage only. According to the method of logical effort, the minimum delay of the 1-stage path is

where branching effort  accounts for the branch before the inverter, and  is the path input capacitance  because  and 
are composed in parallel. Thus, we can simplify  to obtain

We find that the minimum path delay is independent of off-path capacitance  This result may be not be what we might have expected when comparing to Example
3.11, where all off-path capacitances affect the minimum path delay. Thus, we may develop doubts about the correctness of our derivation of  Did we do anything
wrong in our analysis?

It turns out that the method of logical effort happens to yield the correct result. We just need to interpret  carefully. Unlike Example 3.11 our circuit does not include
a logic stage that drives input  Thus, in our application of the method of logical effort, we included the branching effort perhaps naively. If we interpret the branch as
a current divider, then we might conclude that the branch reduces the current that drives the inverter and, hence, slows down the inverter stage. However, this slow
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down depends on the driver stage, which the circuit does not specify. Hence, we cannot quantify the slow-down due to the branch as part of the inverter stage after the
branch. This argument becomes obvious if we interpret the parallel capacitances of the branch as a current divider, where the important quantity is the voltage of node

 rather than the currents into the capacitors. The currents divide such that the voltage across the parallel capacitances remains the same. The voltage of input 
changes with a delay proportional to  Therefore, the branch does not slow down the inverter stage but the speed by which the input voltage of the inverter,
and  transitions.

In our analysis with the method of logical effort, the branching effort cancels out input capacitance  and the remaining input capacitance  corresponds to the
path after the branch. Imagine removing  in the circuit diagram, then the minimum delay of the path is exactly  as determined above. The lesson to be learned
from this example is that branches do not affect the delay of the path after the branch. Instead, branches effect the delay of their driver stage. If we do not specify the
driver stage, we cannot quantify the effect of the branch on the path delay. In the method of logical effort the branch disappears almost magically, just as it should.

Minimize the delay of branching path  using calculus.
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a. For each stage, derive the stage delay.
b. Express path delay  as a function of scale factor  and minimize  using calculus.
c. Compute  and the associated 

Path of interest  consists of two stages, inverter 1 in stage-1 and inverter 2 in stage-2. Inverter 3 branches off the output of stage 1. Hence, off-path inverter 3 diverts drive
current from inverter 1 to inverter 2. We begin with the analysis of stage 1. The load of inverter 1 consists of parallel input capacitances of inverters 2 and 3, that we call  and 
Therefore, the electrical effort of inverter 1 with input capacitance  counting both on-path and off-path loads, is

and the delay of stage 1 is
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Since the scale factors of the inverters are given in the schematic, we know that inverter 1 is a reference inverter with  capacitive units, inverter 2 has input capacitance
 and inverter 3 has input capacitance  Substituting the capacitances in  we obtain

Since stage 2 does not branch, the delay of inverter 2 is

The delay of path  is the sum of the stage delays:

The path delay is a function of scale factor  Therefore, we can minimize the path delay by setting the derivative to zero:

Thus, the minimum path delay from  to  is

time units.
Hide

Minimize the delay of branching path  in Exercise 3.8 using the method of logical effort.

a. Determine path logical effort  path electrical effort  path branching effort  and path parasitic delay 
b. Compute best stage effort 
c. Compute minimum path delay  and associated scale factor 

We begin by determining the branching efforts of the stages on the path of interest. Inverter 1 in stage 1 drives on-path inverter 2 and off-path inverter 3. The input capacitances of
these inverters are   and  Branching effort  of stage 1 is the ratio of the on-path and off-path load capacitances:



Stage 2 on the path of interest consists of inverter 2. It’s output is connected to load capacitance  without branching. Therefore, we account for branching effort  of stage 2 as

The path branching effort of path  is the product of the stage branching efforts:

The path logical effort of path  is the product of the stage logical efforts:

The path electrical effort of path  is the product of the stage electrical efforts:

Note that we use the on-path electrical efforts for the stage efforts  and  as if there were no off-path branches. Branches are accounted for separately with branching effort 

The path parasitic delay of path  is the sum of the stage parasitic delays:

Path effort  of a path with branching is  and best stage effort  For our 2-stage path  we find

We obtain minimum path delay  if each stage of the path bears best stage effort  Then, we have for our 2-stage path:

This is the same result that we found through the minimization by calculus in Exercise 3.8, however, with straightforward algebra due to the method of logical effort.

To determine scale factor  we notice that each stage on path  must bear best stage effort  In particular, the stage effort of inverter 2 must be equal to  which yields
an equation for :



Alternatively, we could use the stage effort of inverter 1,  to deduce 
Hide

Use the method of logical effort to minimize the delay of branching path  assuming 
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a. Determine path logical effort  path electrical effort  path branching effort  and path parasitic delay 
b. Compute best stage effort 
c. Compute minimum path delay 

Path of interest  consists of two stages, i.e.  Stage 1 consists of a 2-input NAND gate with input capacitance  and stage 2 features a 3-input NAND gate with input
capacitance  The 2-input NOR gate with input capacitance  branches of the output of stage 1. We analyze the circuit, starting with the path logical effort of path :

The path electrical effort of path  is the ratio of load capacitance and path input capacitance:

Path branching effort  is the product of the stage branching efforts. Given that  we find:

The path parasitic delay is the sum of the stage parasitic delays:
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3.5. Forks

Branching circuits occur in countless applications, for example to drive the complemented and uncomplemented inputs of an XOR gate. If we have a circuit that

produces signal  we need to generate  to drive both the  and  inputs of the XOR gate. A branching circuit is a fork, if it branches to output both the
complemented and uncomplemented input. More specifically, we define an n-fork for  as a fork with two legs, one with  inverters and the other with 
inverters.

AA

AA

AA
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AA

AA

Figure 3.7: A 1-fork (left) and a 2-fork (right) output both the complemented and uncomplemented input.

Depending on the choice of  one of the legs, the even leg, features an even number of inverters while the odd leg has an odd number of inverters. Since the number
of stages in the even and odd legs differ, the question is how to minimize the delay of the -fork. At the first glance, we may identify the longer -stage leg as the path
of interest, and minimize its path delay. Since the shorter leg branches off the longer leg, we are in need of a constraint to correlate the sizes of the stage-1 inverters
of the legs. In terms of branching effort, the stage-1 inverter of the leg with  inverters presents the on-path capacitance, and the stage-1 inverter of the leg with

 stages the off-path capacitance. In the following, we derive a perhaps less obvious constraint for the on-path and off-path capacitances that minimizes the delay
of an -fork by equalizing the delays of both legs.

Since the path has two stages, the best stage effort is

and the minimum path delay

We note that path  is overburdened, because  Thus, we should be able to reduce the path delay below  by path sizing.
Hide
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3.5.1. Fork Delay

We study -forks with an -stage leg and an -stage leg as shown in Figure 3.8, strictly speaking for  We assume that the on-path electrical efforts for
the legs are given as  for leg 1 and  for leg 2. We express the load capacitances of the legs as a function of fork input capacitance  Leg 1 is the -stage
leg. The stage-1 inverter of leg 1 has input capacitance  and load capacitance  Leg 2 is the -stage leg. Its stage-1 inverter has input
capacitance  and the load capacitance is  From the perspective of the fork input, the legs present a parallel composition of input capacitances, so
that

Since a fork branches into two legs, the path effort of leg 1 is

and of leg 2

If we replace the fork with an equivalent circuit, the equivalent circuit has input capacitance  and output capacitance  Thus,
the electrical effort of the entire fork or its equivalent circuit is 
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Figure 3.8: An -fork with input capacitance  and load capacitance 

To keep things simple, we begin our study of forks by assuming that the capacitive loads of both legs are equal, i.e.  where leg electrical effort
 Thus, the total load of the fork is  The path efforts of the legs,  and  may differ, depending on the

choice of leg input capacitances  and  In fact, since the lengths of the legs differ by one stage, the longer leg 1 can support a larger path effort than the shorter
leg 2. Given equal load capacitances, we may increase the path effort of leg 1 by reducing  If we require a constant input capacitance  decreasing  must be
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balanced by increasing  A shift of input capacitance between the two legs corresponds to a proportional shift in the division of the drive current between the legs.
Experiment 3.5 allows you to vary the input capacitances  and  of the legs, and observe the effect on the fork delay.

▶  Experiment 3.5: Delay of a 3-Fork with Equal Loads

Assume that input capacitance  is fixed, for example by other circuit design constraints. Then, the leg input capacitances  and  are correlated through the
parallel composition:  Choose  and total load  by tuning leg effort  Minimize the fork delay by sizing the inverters.



Inverter 1:  2    Inverter 3:  1    Inverter 5:  1

Inverter 2:  2    Inverter 4:  1

Leg effort:  25    Total Load: 600    Delay: 104.5



The key observation for minimizing the fork delay in Experiment 3.5 is that the allocation of input capacitance  to leg input capacitances  and  matters. Of
course, this fact applies to any branching circuit, not only to forks. In case of a fork with equal loads, the correlation between the input capacitances when keeping

 constant enables us gain additional insight into the the cause of the fork delay. The delay of an -stage inverter chain is minimal, if each stage bears

the same effort  Each leg of a fork is an inverter chain. If we size the inverters to minimize the leg delays, we obtain minimum delay  for
leg 1, and minimum delay  for leg 2. We may be satisfied with a delay of the fork that is the maximum of the independently
minimized leg delays,  However, we can do better by recognizing that the minimum fork delay occurs if the leg delays are equal. If they are not, we can
reduce the larger leg delay at the expense of increasing the smaller delay of the other leg.
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Figure 3.9: Minimize the delay of a 3-fork by shifting path efforts between the legs.

Figure 3.9 illustrates the idea for a 3-fork with leg electrical effort  and input capacitance  In this case, the load capacitances are
 First, assume that the legs present equal loads of  capacitive units each. Then, both legs bear equal path efforts

 The plot shows the minimum path delays  of the 3-stage leg and  of the 2-stage leg as a function of path effort  For  3-stage
leg 1 has minimum delay  and is faster than 2-stage leg 2 with minimum delay  The fork delay is dominated by leg 2. We can minimize
the fork delay by reducing path effort  of leg 2 at the expense of increasing path effort  of leg 1 to honor the constraint  When reducing

 by increasing input capacitance  of leg 2, we reduce  by the same amount. In turn, the reduction of  increases  and,
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consequently, leg delay  The fork delay is minimal when the leg delays are equal,  In Figure 3.9 this occurs when  and 
The corresponding input capacitances are  for leg 1 and  for leg 2. As a result the minimum fork delay amounts to  delay units.

We can determine the leg input capacitances for minimum fork delay by formalizing the idea of shifting input capacitance between the legs. To that end, we introduce
skew factor  in range  and express the leg input capacitances as fractions of the fork input capacitance:

such that  Now, the path efforts are correlated through skew factor  For leg 1 we have  and for leg 2  The key
insight for minimizing the fork delay is to equalize the leg delays rather than minimizing the leg delays independently:

Given leg electrical efforts  and  for an -fork, even in the special case with equal loads,  this constraint presents a nonlinear equation in 
Solving this equation for  analytically is difficult for arbitrary  We could determine  numerically, for example by means of a Newton iteration. Alternatively, we can
reduce the problem of computing  to finding the roots of a polynomial, for which solutions exist as part of mathematical software packages like Octave or
Mathematica with online portal WolframAlpha.

3.5.2. 1d-Analysis Method

The method of logical effort does not require explicit use of skew factor  to derive the minimum fork delay. We demonstrate this derivation by means of the 3-fork in
Figure 3.10 below. First, we apply the key insight of the method of logical effort, i.e. a path achieves minimum delay if all stages bear the same effort. This insight
enables us to allocate stage efforts to each inverter as follows. Consider the 3-stage leg of the 3-fork, and think of the stage effort as effort delay in units of time. If the
effort delay of the whole leg is  then each of the 3 stages must have effort delay  to minimize the path delay. Analogously, if the 2-stage leg has effort delay 
then each stage must have effort delay  to minimize the path delay. Then, the leg delays are

Second, we apply our key insight about minimizing fork delay, i.e. both legs must have equal path delay. In case of the 3-fork, we demand
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This equality is satisfied by an effort delay  if  and  because

Figure 3.10 annotates the inverters with the effort delays that yield minimum fork delay as a function of delay 
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Figure 3.10: 3-fork with effort delay allocation.

Two aspects of the effort delay allocation in Figure 3.10 deserve a closer look. First, the effort delays minimize the fork delay by equalizing the leg delays, which
determines skew factor  implicitly, and by minimizing the path delay of each leg, because each gate on a leg bears the same stage effort. To solve the delay
minimization problem, we merely need to determine the value of  Second, our algebraic parameterization of leg effort delays  and  may be
viewed as compensating for one unit of parasitic delay on leg 1 with one unit of effort delay on leg 2. The path parasitic delay of leg 1 is  whereas leg
2 has path parasitic delay  We call the difference  in  the parasitic delay compensation, because it
compensates the excess parasitic delay of leg 1 with effort delay in leg 2.

Next, we analyze the delay of the fork legs as a function of  The effort delay of an inverter,  is equal to the electrical effort, because the logical effort is
 Thus, for the inverters of leg 1, we find for the stage-1 inverter effort delay

for the stage-2 inverter effort delay
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(7)

(8)

and for the stage-3 inverter effort delay

Note that the product of the right-hand sides is a telescoping product. Therefore, multiplying the equations yields

Analogously, for the inverters of leg 2, we find the effort delay of the stage-1 inverter

the effort delay of the stage-2 inverter

and the product of the equations

The input capacitance of the fork is the sum of the leg input capacitances. Substituting the expressions in Equation (7) and Equation (8) for  and  we find

Rearranging the equality we obtain a polynomial in variable :

The solutions to this equation are the roots of the polynomial, i.e. those values of  where the polynomial is zero. A polynomial of degree 5 has 5 roots. Given 
and  we can determine the roots with a mathematical software package like WolframAlpha. For  copy or type this equation:

d^5 + 2 d^4 + (1 - 4 * 25) d^3 - 27 * 25 d^2 - 54 * 25 d - 27 * 25 = 0

http://bibl.ica.jku.at/dc/build/html/mathfoundations/mathfoundations.html#roots-of-poly
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into the WolframAlpha input form and click the equal sign.

WolframAlpha returns the roots:

Root  is the only feasible solution for effort delay  which must be a positive real number to qualify as a time. Knowing that  we can deduce the design
parameters of our fork. The 3-fork has a minimum delay of  delay units, if we scale the stage-1 inverters of the legs to present input
capacitances  according to Equation (7),  according to Equation (8), and all other inverters for the input capacitances derived above. Note that
skew factor  although we do not need to know  to minimize the fork delay. Experiment 3.5 enables you to verify our fork design.

The methodology for deriving the parameters of a fork with minimum delay generalizes to branching circuits with two legs. We call it the 1d-analysis method, because it
is based on finding the roots of a univariate polynomial with effort delay  as the only variable.

1d-Analysis Method

Given a branching circuit with an -stage leg 1 and an -stage leg 2, input capacitance  and load capacitances  and  Follow these
steps to minimize the circuit delay:

1. Determine the leg parasitic delays  and 

2. Without loss of generality, assume that  and parasitic delay compensation  Allocate effort delay  to each stage of leg 1 and
 to each stage of leg 2.

3. Form the telescoping products of the leg effort delays, including logical efforts:

http://www.wolframalpha.com/
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Substitute leg input capacitances  and  in the branch constraint  to derive a univariate polynomial and determine its roots:

4. Identify the positive real root  that solves our problem, and determine the scale factors of all gates. The minimum circuit delay is 

The 1d-analysis method enables us to analyze the 1-fork with a 0-stage leg and equal loads in Figure 3.11. The unassuming circuit designer might be tempted to use
this degraded fork to generate the complemented and uncomplemented input. However, a 1-fork is rarely a good circuit to use.
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Figure 3.11: A 1-fork cannot equalize leg delays.

According to the 1d-analysis method, we assign effort delay  to the inverter in leg 1. Then, leg 1 has delay  and leg 2 has delay  Note that
negative effort delay  would be required to equalize the leg delays. Furthermore, the effort delay of leg 1 is  and the input capacitance of leg 2
is the load capacitance,  Thus, the branch constraint yields

Since CMOS inverters have a positive effort delay,  we conclude that  and obtain the constraint on the leg electrical effort:

This constraint determines the input capacitance of the inverter in leg 1. For example, leg electrical effort  yields

In terms of  we can express leg load  and input capacitance  Thus, all capacitances of the 1-fork are determined by
choosing  As a consequence, effort delay  of the inverter in leg 1 is  and the delay of leg 1 is  time units. This style of 1d-
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analysis shows that the 1-fork is effective for  However, if  approaches value 1, the inverter has to stem an infinitely large effort. The underlying problem
is that the 1-fork has only one inverter to equalize the leg delays. Therefore, as a rule of thumb, it is rarely a good idea to use a 1-fork. Use a 2-fork instead.

Use the 1d-analysis method to minimize the delay of the 2-fork assuming  and 

22CC
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22HH

11HH ininCC

ininCC

a. Determine the leg parasitic delays and allocate effort delays using one parameter 
b. For each leg, form the products of the effort delays, and derive a polynomial in 
c. Determine the root of the polynomial and the minimum leg delays  and 

The 2-fork has two inverters on leg 1 and one inverter on leg 2. The parasitic delay of leg 1 is  and of leg 2  The difference

s the parasitic delay compensation that we allocate in the stage effort assignments to balance the leg delays.

Assuming that leg 1 has a total effort delay of  we allocate stage effort delay  to each of the two inverters, because path delay is minimized if all stages bear the same effort.
Since leg 2 has a single stage only, the inverter has to bear all of the path effort plus the parasitic delay compensation, which amounts to stage effort  for the inverter in leg 2.

22CC

11CC 33CC

ininCC 11HH

22HH ininCC

ininCC

d/2d/2 d/2d/2

d+1d+1

Given the allocation of effort delays, we form the products of the stage effort delays, which are simple expressions because the product of the stage electrical efforts telescopes. For
eg 1, we obtain

Leg 2 has one stage only, and the stage effort equals the electrical effort because :
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3.6. Branching Circuits

The 1d-analysis method enables us to design not only forks but also more general instances of branching circuits with minimum delay. In this section, we discuss
design issues of branches with logic gates, how to determine the best number of stages of branches, how to handle more than two branches, and branches that
reconverge again.

3.6.1. Path Sizing Branches

In Section Forks, we minimize the delay of a 3-fork. We did not ask whether the 3-fork has appropriate leg lengths, or whether a 2-fork or 4-fork would result in an
even smaller delay for the given load. In the following, we examine the path sizing problem for a branching circuit if both legs are inverter chains of equal length, see
Figure 3.12.

We rearrange these equations to obtain expressions for  and :

Next, we substitute  and  in the branch constraint,  and rearrange the equation into a polynomial:

Effort delay  is a root of the polynomial

given  and  This polynomial has two complex roots and one real root:

Therefore, leg 1 has a delay of  time units and leg 2 has the same delay  time units.
Hide
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Figure 3.12: A branching circuit with two -stage legs, input capacitance  and load capacitance 

If the electrical efforts of the legs were equal,  the circuit is symmetric. We would choose equal leg input capacitances,  to supply both legs
with equal drive currents. According to the branch constraint,  and given input capacitance  we scale the stage-1 inverters of the legs such that

 Since both legs bear the same electrical effort, we can determine the best number of stages  using the path sizing calculator with path effort

In general, the leg electrical efforts may differ such that  According to the method of logical effort, we minimize the delay of each leg, independently, if each
inverter stage of a leg bears the same effort. For leg 1, given path effort  the stage effort that minimizes the leg delay is

 Analogously, the stage effort for leg 2 is  To minimize the delay of the entire branching circuit we equalize the leg delays, a
lesson we have learned from the design of forks.

Since both legs have the same number of stages  this constraint simplifies to

We find that we can minimize the branch delay by choosing the leg input capacitances proportional to the leg electrical efforts. Given the branch constraint with input
capacitance  we obtain the leg input capacitances:

Furthermore, Equation (9) yields
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i.e. we minimize the delay of the branching circuit, if the stage efforts in the two legs are equal.

■  Example 3.13: Path Sizing Branches of Inverter Chains

We solve the path sizing problem of the branching circuit in Figure 3.12 for input capacitance  and load capacitances  and 

First, we deduce the leg electrical efforts  and  Second, due to Equation (9), we notice that input capacitance  of leg
1 should be twice as large as  Furthermore, since we are given  we can calculate in leg input capacitances:

Third, the path efforts of the legs are equal, and amount to  With the aid of the path sizing calculator, we find that we should use 

stages in each leg. Then, we minimize the delay of the circuit by sizing the six inverters such that each inverter bears stage effort  The minimum delay
is  delay units.

Let us contemplate the solution to the path sizing problem for the branching circuit in Example 3.13: We scale the input capacitances of the stage-1 inverters in
proportion to the path electrical efforts. As a result, we equalize the path efforts of the legs, which enables us to determine the path lengths of both legs
simultaneously, as if we were sizing a single path. This observation motivates us to introduce the concept of an equivalent inverter path, in analogy to equivalent
resistive and capacitive networks. Figure 3.13 shows the equivalent inverter path of the branching circuit in Figure 3.12 with input capacitance  and the sum of
the leg electrical efforts  as path electrical effort.
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Figure 3.13: Equivalent inverter path of the branching circuit in Figure 3.12.

The equivalent inverter path enables us to reduce the path sizing problem for a branching circuit to that of a multistage path as discussed in Section Path Sizing.
Once we have determined the best number of stages, we proceed by employing Equation (9) to scale the stage-1 inverters of the legs, and perform gate sizing
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(10)

(11)

according to the method of logical effort to minimize the path delay of the branching circuit. This method generalizes to branching circuits with arbitrary logic gates, if
we replace the leg electrical efforts with the leg path efforts to account for the leg logical efforts.

For branching circuits with logic gates on the legs, the path efforts of the legs are:

Assume that leg 1 has  stages and leg 2 has  stages. Then, equalizing the leg delays to minimize the delay of the branching circuit yields the constraint:

In the special case for legs with equal lengths,  and equal path parasitic delays,  this constraint simplifies to

Then, the branch constraint,  enables us to size the stage-1 gates of the legs such that the input capacitances are

The equivalent inverter path of this branching circuit has load capacitance 

In case where both legs have the same number of stages but different parasitic delays, we may assume that Equation (10) holds approximately:

If the number of stages differ, we may append inverter pairs to the shorter leg until the path lengths differ by at most one stage. Then, Approximation (11) may still be
accurate enough to permit path sizing of the equivalent inverter path with load  If the best number of stages requires increasing the leg
lengths, we can accomplish the task by appending inverter pairs. Otherwise, if the best path length is smaller, we may redesign the logic on the legs to reduce the
number of stages or settle with a suboptimal design.



■  Example 3.14: Branch Design with Logic

We wish to minimize the delay of the the branching circuit in Figure 3.14 with path electrical efforts  and 
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Figure 3.14: A branching circuit with logic gates on its legs.

We begin by deriving the path logical efforts and path parasitic delays of the legs. Figure 3.14 annotates each gate with its logical effort and parasitic delay. The path
logical efforts of the legs are the products of their gate logical efforts:

The path parasitic delays of the legs are the sums of their gate parasitic delays:

We notice that both legs have 3 stages but different path parasitic delays. The equivalent inverter path enables us to determine the best number of stages
approximately. The equivalent inverter path has input capacitance  and load capacitance
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Thus, the equivalent inverter path has path effort  for which the path sizing calculator prescribes a best number of stages of  Since both
legs of the branching circuit have 3 stages already, we retain the logic without modifications. To minimize the delay, Approximation (11) permits estimating the input
capacitances of the stage-1 gates of the legs as:

Furthermore, if each of the gates bears stage effort  then the path effort delay of the branching circuit is approximately 
Including the path parasitic delays, we estimate the delay of leg 1 to be  and the delay of leg 2 to be  This
approximation is easy to obtain on the back of an envelope.

Alternatively, with a little extra work, we apply the exact 1d-analysis method after determining path size  with the approximating equivalent inverter path. We find
parasitic delay compensation  and assign effort delay  to each gate of leg 1 and  to each gate of leg 2. We obtain the polynomial

 which we do not need to expand further for WolframAlpha to find the roots. The only positive real root is 

and the resulting minimal circuit delay  delay units. Note that  is reasonably close to our approximate leg delays of  and
 validating the accuracy of the approximation. The 1d-analysis rewards the extra design effort with exact rather than approximate information for gate

sizing, by prescribing different stage efforts  for leg 1 and  for leg 2. With a little practice and the aid of mathematical software
like WolframAlpha for root finding, the 1d-analysis is as easy as the back-of-the-envelope approximation.

■  Example 3.15: Branch Design with Path Sizing

We wish to minimize the delay of the branching circuit in Figure 3.15 with path electrical efforts 
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Figure 3.15: A branching circuit with logic gates on the legs.
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Analogous to Example 3.14 we first derive the approximating equivalent inverter path to determine the best path size. The leg logical effort of leg 1 is the logical effort
of the NAND gate,  and for leg 2, we obtain  The load capacitance of the approximating equivalent inverter path is

For path effort  the path sizing calculator prescribes a path length of  Since leg 1 of our branch has only one stage, we append two
inverters. Leg 2 we leave unmodified, because two stages may be sufficiently fast, and appending an inverter pair would overshoot the best number of stages by one.
The modified branching circuit is shown in Figure 3.16.
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Figure 3.16: Branching circuit with leg 1 extended for best leg length.

Next, we apply the 1d-analysis method to minimize the branch delay. The path parasitic delays are  for leg 1 and  for leg 2. We
find a parasitic delay compensation of  and assign stage delay  to each gate of leg 1 and  to each gate of leg 2. Multiplying the effort delays of
each path, we obtain  and  Substituting  and  in the branch constraint, we obtain the polynomial

 WolframAlpha finds the positive real root  If each gate in leg 1 bears stage effort  and each

gate in leg 2 stage effort  then the branching circuit has a minimum delay of  delay units. Note that the stage effort  exceeds the
best stage effort  by more than  To reduce stage effort  we may want to try extending leg 2 with an inverter pair after all.

3.6.2. Branches with Driver Path

When we design a circuit with a branch, the input capacitance of the branch presents a load to another logic circuit. In the following, we discuss the design of circuits
with branches that are driven by a logic path. Figure 3.17 shows an example, where the driver path consists of a single stage only, a NOR gate.
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Figure 3.17: Branching circuit with driver path.

If we wish to minimize the delay of the branching circuit in Figure 3.17, we are faced with the problem of how much effort the driver path and how much effort the legs
of the branch should bear. In general, the legs of the branch may bear different path efforts, e.g.  and  in Figure 3.17, and, furthermore, the path effort of
the driver path may differ from path efforts of the legs. We know how to use the 1d-analysis method to assign effort delays to the gates of the legs. Assume the
driver path bears effort delay  and the branch bears effort delay  which we allocate to the legs according to the 1d-analysis method. Figure 3.17 includes the
allocation of the effort delays to the gates of the circuit. Now, the design task involves deriving effort delays  and  such that the circuit delay is minimized. The 2d-
analysis method enables us to find these two delays:

2d-Analysis Method

Given a branching circuit and a driver path with input capacitance  and load capacitances  and  Follow these steps to minimize the circuit delay:

1. Given an -stage driver path, assign effort delay  to each gate of the driver path, and use the 1d-analysis method to allocate delay  to the gates of the
legs.

2. Form the products of the leg efforts and the driver path efforts, and use the branch constraint to express  as a function of  or vice versa.
3. Express path effort delay  as a function of  (or ), and minimize  e.g. by means of calculus.

We introduce the 2d-analysis method with two examples.

■  Example 3.16: Branch Design with 2d-Analysis
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We minimize the delay of the circuit in Figure 3.17 using the 2d-analysis method. Step 1 of the 2d-analysis method, allocating effort delay  to the driver path and
 to the gates of the branch, is already complete. Note that the 1d-analysis method assigns path effort delay  to leg 1, which is by one delay unit larger than

path effort delay  of leg 2 in order to compensate for the larger parasitic delay of leg 2. Next, in step 2 of the 2d-analysis, we derive the
telescoping products of the leg efforts:

Rearranging these equations yields expressions for leg input capacitances  and :

The effort delay of the driver stage with load capacitance  is:

Here, we have applied the branch constraint that the branch input capacitance, i.e. the load of the driver path, is the sum of leg input capacitances. Substituting 
and  in this equation, yields  as a function of :

In step 3 of the 2d-analysis we express path effort delay  of the whole circuit as a function of :

To find the minimum of path effort delay  with take derivative w.r.t  and set the result to zero:

Rearranging this equation into polynomial form reduces our minimization problem into yet another application of root finding:



In principle, we also need to check whether the  derivative is positive for  to attain a minimum. Alternatively, we can inspect the plot of  in
WolframAlpha to verify a minimum at the relevant root. For instance, given path electrical efforts  we invoke WolframAlpha to find the roots of

 The only positive real root is  Thus, we find  and the minimum path effort delay of the branching
circuit is  Including path parasitic delay  the minimum path delay of the entire circuit is  delay units.

■  Example 3.17: Fork Design with 2d-Analysis

In Section 1d-Analysis Method, we minimize the delay of the 3-fork in Figure 3.10. For leg electrical efforts  we obtain a minimum delay of
 units. In this example, we investigate whether it is beneficial to replace two inverters of the 3-fork with one inverter on the drive path of a 2-fork. Figure

3.18 shows the circuit, which is logically equivalent to a 3-fork, but saves one inverter.
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Figure 3.18: A 2-fork with a driving inverter is logically equivalent to the 3-fork in Figure 3.10.

We use the 2d-analysis method to minimize the delay of the 2-fork with a 1-stage driver path. In step 1 we allocate the effort delays as annotated in Figure 3.18
already. The inverter in lower leg 2 shoulders parasitic delay compensation  w.r.t. upper leg 1. Next, we derive the telescoping products
of the effort delays for the legs of the 2-fork:

and for the driver path with load capacitance :
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Substituting  and  yields  as a function of :

Step 3 minimizes path effort delay  by taking the derivative of  w.r.t.  and finding the relevant root of the resulting polynomial:

For  WolframAlpha finds the positive real root  from which we deduce  Including parasitic delay  the minimum path delay
is  units, which is marginally larger than the minimum delay of the 3-fork.

3.6.3. Reconvergent Branches

We conclude our discussion of branching circuits by applying the 1d-analysis and 2d-analysis methods to branches whose legs reconverge at the inputs of a gate.
Figure 3.19 shows such a circuit. The NAND gate in stage 1 drives a branch with legs in stage 2 that reconverge at the NAND gate in stage 3. Furthermore, each of
the inputs of the circuit branches. One of the two legs drives the stage-1 NAND gate and the other the stage-2 NAND gate. The design challenge is to minimize the
delay of this circuit.
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Figure 3.19: A circuit with reconverging branches.
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(12)

First, we recognize that the longest path through the circuit traverses three NAND gates, one in each stage. The circuit is symmetric if we assume that the NAND gates
in stage 2 have equal size. Then, the path from the upper input through the stage-1 NAND gate, the upper stage-2 NAND gate, and the NAND gate in stage 3 is
representative for the four longest paths from either input to the output. This is our path of interest.

To determine the delay of the circuit, we allocate effort delays   and  to the corresponding stages, as shown in Figure 3.19. Analysis of the circuit reveals the
stage effort delays:

Here, the load of the stage-1 NAND gate is the sum of the leg input capacitances, both of which are  assuming that the stage-2 NAND gates have equal size. The
branch constraint for the circuit input is

enabling us to capture the relation between the effort delays in a single equation:

To solve Equation (12), we need to constrain variables   and  A simplistic constraint assumes that all stage efforts are equal,  as motivated by
the key insight from the analysis of multistage paths. Although our circuit is not a simple path, this constraint yields a univariate polynomial of degree three. For
example, given  we obtain the positive real root  and path delay 

We might expect a better design from a 2d-analysis, assuming that the NAND gates in stages 2 and 3 are the legs of the branch, with the additional constraint that the
stage-3 NAND gate belongs to both legs. To equalize the leg delays, we allocate effort delay  to stages 2 and 3. However, we assume a potentially different
delay  for the driver path in stage 1. Now we wish to minimize path delay  We rearrange Equation (12) to express  as a function of  assuming

:



such that

We minimize  by setting the derivative of  w.r.t.  to zero, and find the root  for  As a result, we obtain  and
 We conclude that the 2d-analysis produces a slightly faster circuit than the 1d-analysis.

To reduce the delay of the circuit beyond  we observe that the branches at the circuit inputs have the topology of reconvergent 1-forks that drive the stage-2
gates. One leg includes the stage-1 NAND gate instead of an inverter, and the other leg contains no logic. In Section 1d-Analysis Method, we identified a 1-fork as
an undesirable circuit. As a case in point, we improve the circuit in Figure 3.19 by replacing the 1-fork with 2-fork topologies. To that end we insert back-to-back
inverters as shown in Figure 3.20. The back-to-back inverters in the upper leg and the NAND gate in the lower leg resemble a 2-fork, except that the 1-stage leg
contains the NAND gate rather than an inverter.
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Figure 3.20: Improved version of reconverging branch circuit in Figure 3.19.

Since the path parasitic delay of two inverters equals the parasitic delay of a NAND gate, the delays of the two legs of the 2-forks are equal if we allocate effort delay 
to the NAND gate and  to each of the inverters. Using a 1d-analysis, we also allocate effort delay  to the remaining NAND gates, as shown in Figure 3.20. The
stage efforts of the inverter pair and the NAND gates are:

Applying branch constraint  yields:
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Given  we find the positive real root  The minimum delay of the circuit in Figure 3.20 is  units, which is faster than the
original circuit in Figure 3.19.

Use the 1d-analysis method to minimize the delay of the branching circuit assuming 

22CC
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ininCC 11HH
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a. Determine the leg parasitic delays and allocate effort delays using one parameter 
b. For each leg, form the products of the effort delays, and derive a polynomial in 
c. Determine the root of the polynomial and the minimum leg delays  and 

The branching circuit has a 3-input NAND gate followed by an inverter on leg 1 and a 2-input NOR gate followed by a 2-input NAND gate on leg 2. The path parasitic delay of leg 1 is

and of leg 2

Since  we do not need a parasitic delay compensation. Therefore, we assume that each leg has effort delay  and allocate stage effort delay  to each of the
four gates.

The product of the effort delays of leg 1 equals its path effort including the path logical effort:

and for leg 2:
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3.7. Summary

The method of logical effort enables us to design digital circuits with minimum delay. It offers insight, recipies for systematic delay analysis, and methods for gate and
path sizing. The 1d-analysis and 2d-analysis methods facilitate the design of forks and branching circuits, that rely on the delay minimization of a basic multistage path.
The following steps summarize the path design procedure:

1. Calculate the path effort  of the path of interest. Path logical effort  is the product of the gate logical efforts, and path electrical effort  is the
telescoping product of the gate fanouts. For paths without branches, path branching effort  equals 1.

2. Use the path sizing calculator to determine the best number of stages  for the path of interest. If necessary, adapt the circuit to have  stages.
3. Size the gates on the path of interest such that each gate bears stage effort 
4. Calculate path parasitic delay  as the sum of the gate parasitic delays. The minimum path delay is 

The path logical effort of leg 1 is  Given  we find  The product equation yields an expression for

Analogously, for leg 2 we find path logical effort  and with   Rearranging the product equation results in

Next, we substitute  and  in the branch constraint to obtain a polynomial in :

This equation represents a degraded polynomial of degree 2, which is easy to solve. Since we are interested in positive delays only, we find effort delay  by taking the positive square
root:

Therefore, both legs have a minimum path delay of  time units.
Hide



The key insight due to the path design procedure is the fact that each stage must bear the same effort to minimize the path delay. Together with the insight that the
legs of a branch must have equal delay to minimize the delay of the whole branching circuit, the method of logical effort leads to the 1d and 2d-analysis methods.
These methods permit the design of complex circuit topologies with nothing but paper and pencil, and the aid of a root finding package.


